Selected publications *InsituPro* product line

Noggin and Noggin-Like Genes Control Dorsoventral Axis Regeneration in Planarians
M. Dolores Molina et al., Current Biology 2011, 21(4) 300 - 305

Evolutionary implications of morphogenesis and molecular patterning of the blind gut in the planarian Schmidtea polychroa.
Martin-Durán et al., Dev Biol. 2011 352 (1), 1654-76

Jagged 1 regulates the restriction of Sox2 expression in the developing chicken inner ear: a mechanism for sensory organ specification.
Neves et al., Development 2011 138 (4), 735-44

The repression of Notch signaling occurs via the destabilization of mastermind-like 1 by Mesp2 and is essential for somitogenesis.
Sasaki et al., Development 2011 138 (1), 55-64

Arabidopsis Tyrosylprotein sulfotransferase acts in the auxin/PLETHORA pathway in regulating postembryonic maintenance of the root stem cell niche.
Zhou et al., Plant Cell 2010 22(11), 3692-709

ADP-ribosylation factor machinery mediates endocytosis in plant cells.
Naramoto et al., PNAS 2010 107(50), 21890-5

Plasma membrane-bound AGC3 kinases phosphorylate PIN auxin carriers at TPRXS(N/S) motifs to direct apical PIN recycling.
Dhonukshe et al., Development 2010 137 (19), 3245-55

A mouse line expressing Sall1-driven inducible Cre recombinase in the kidney mesenchyme
Inoue et al., Genesis 2010 48 (3), 207 - 212

Splitting placodes: effects of bone morphogenetic protein and Activin on the patterning and identity of mouse incisors
Munne et al., Evol Dev. 2010 12(4), 383-92

The RNA binding protein Tudor-SN is essential for stress tolerance and stabilizes levels of stress-responsive mRNAs encoding secreted proteins in Arabidopsis.
dit Frey et al., Plant Cell 2010 22(5), 1575-91

A mouse knockout library for secreted and transmembrane proteins.
Tang et al., Nat Biotechnol. 2010 28(7), 749-55

Hydroxysteroid (17(β) Dehydrogenase 7 Activity Is Essential for Fetal de Novo Cholesterol Synthesis and for Neuroectodermal Survival and Cardiovascular Differentiation in Early Mouse Embryos
Joleka et al., Endocrinology 2010, 151 (4), 1884-1892

A transitional extracellular matrix instructs cell behavior during muscle regeneration.
Calve et al., Dev Biol. 20010, 344(1):259-71

Expression profiling of rainbow trout testis development identifies evolutionary conserved genes involved in spermatogenesis
Rolland et al., BMC Genomics (2009), 10:546

Arabidopsis ASA1 Is Important for Jasmonate-Mediated Regulation of Auxin Biosynthesis and Transport during Lateral Root Formation
ENDOSPERM DEFECTIVE1 Is a Novel Microtubule-Associated Protein Essential for Seed Development in Arabidopsis

Neurodevelopment Genes in Lampreys Reveal Trends for Forebrain Evolution in Craniates

Notch Is a Critical Component of the Mouse Somitogenesis Oscillator and Is Essential for the Formation of the Somites

Lgl2 Executes Its Function as a Tumor Suppressor by Regulating ErbB Signaling in the Zebrafish Epidermis

A Novel puf-A Gene Predicted from Evolutionary Analysis Is Involved in the Development of Eyes and Primordial Germ-Cells

Integrin-linked kinase is an adaptor with essential functions during mouse development
Lange et al., Nature 2009 461, 1002-1006

Extensive molecular differences between anterior- and posterior-half-sclerotomes underlie somite polarity and spinal nerve segmentation
Hughes et al., BMC Developmental Biology 2009, 9:30

The AUXIN BINDING PROTEIN 1 Is Required for Differential Auxin Responses Mediating Root Growth

A Signaling Module Controlling the Stem Cell Niche in Arabidopsis Root Meristems
Stahl et al., Current Biology 2009, 19 (11) 909-914

Similar regulatory logic in Ciona intestinalis for two Wnt pathway modulators, ROR and SFRP-1/5.

A global survey identifies novel upstream components of the Ath5 neurogenic network
Souren et al., Genome Biology 2009; 10 (9): R92.

Expression and localization of clathrin heavy chain in Drosophila melanogaster.
Wingen et al., Gene Expr Patterns. 2009 Oct; 9(7): 549-54

Collagen IX is required for the integrity of collagen II fibrils and the regulation of vascular plexus formation in Zebrafish caudal fins
Huang et al., Developmental Biology 2009, 332 (2), 360-370

FREM1 Mutations Cause Bifid Nose, Renal Agenesis, and Anorectal Malformations Syndrome
Alazami et al., American Journal of Human Genetics, 2009, 85 (3) 414-418

Requirement for Twist1 in frontonasal and skull vault development in the mouse embryo
Bildsoe et al., Developmental Biology 2009 331 (2), 176-188

Signaling integration in the rugae growth zone directs sequential SHH signaling center formation during the rostral outgrowth of the palate
Welsh and O’Brien, Developmental Biology 2009, 336 (1), 53-67

Tinkering with the inductive mesenchyme: Sostdc1 uncovers the role of dental mesenchyme in limiting tooth induction
Munne et al., Development 2009, 136, 393-402.
A deficiency of Lunatic fringe is associated with defects of the rete testis.
Hahn et al., Reproduction 2009, 137, 79-93

Interfering with Wnt signalling alters the periodicity of the segmentation clock
Gibb et al., Developmental Biology 2009 330 (1), 21-31

Early mouse caudal development relies on crosstalk between retinoic acid, Shh and Fgf signalling pathways
Ribes et al., Development 2009, 136, 665-676.

Neurodevelopment genes in lampreys reveal trends for forebrain evolution in craniates.

Novel skeletogenic patterning roles for the olfactory pit
Szabo-Rogers et al., Development 2009, 136, 219-229

Somitovasculin, a Novel Endothelial-Specific Transcript Involved in the Vasculature Development
Mariappan et al., Arterioscler Thromb Vasc Biol. (2009); 29: 1823-1829

In situ Analysis of Gene Expression in Plants
Drea et al., in Plant Genomics (2009), Humana Press

Formaldehyde-Based Whole-Mount In Situ Hybridization Method for Planarians
Pearson et al., Developmental Dynamics 2009, 238, 443–450

Mesp2 and Tbx6 cooperatively create periodic patterns coupled with the clock machinery during mouse somitogenesis.
Oginuma et al., Development (2008) 135 (1), 2555-62

Rapid identification of PAX2/5/8 direct downstream targets in the otic vesicle by combinatorial use of bioinformatics tools
Ramialison et al., Genome Biology 2008; 9 (10): R145.

Pofut1 is required for the proper localization of the Notch receptor during mouse development
Oginuma et al., .Mechanisms of Development (2008) 125 (8), 663-673

Identification of presomitic mesoderm (PSM)-specific Mesp1 enhancer and generation of a PSM-specific Mesp1/Mesp2-null mouse using BAC-based rescue technology
Oginuma et al., .Mechanisms of Development 2008 125 (5-6), 432-440

Mutations in C2orf37, Encoding a Nucleolar Protein, Cause Hypogonadism, Alopecia, Diabetes Mellitus, Mental Retardation, and Extrapyramidal Syndrome
Alazami et al., Am J Hum Genet 2008, 83 (6), 684-691

Sustained epithelial β-catenin activity induces precocious hair development but disrupts hair follicle down-growth and hair shaft formation
Närhi et al., Development 2008, 135, 1019-1028

In Situ Detection of Plant Viruses and Virus-Specific Products
Maule and Havelda, Plant Virology Protocols 2008

Rainbow Trout Gonadal Masculinization Induced by Inhibition of Estrogen Synthesis Is More Physiological Than Masculinization Induced by Androgen Supplementation

A role for Notch signalling in stromal survival and differentiation during prostate development
Orr et al., Endocrinology 2008. 150 (1) 463-472

Mouse Fkbp8 activity is required to inhibit cell death and establish dorso-ventral patterning in the posterior neural tube
Wong et al., Human Molecular Genetics 2008 17(4):587-601

Retinoic acid deficiency alters second heart field formation
Ryckebusch et al., PNAS 2008, 105(8): 2913–2918

Expression of the Lingo/LERN gene family during mouse embryogenesis
Haines and Rigby, Gene Expression Patterns 2008, 8 (2), 79-86

Identification of dkk4 as a target of Eda-A1/Edar pathway reveals an unexpected role of ectodysplasin as inhibitor of Wnt signalling in ectodermal placodes
Filinaux et al., Dev. Biol. 2008, 320 (1) 60-71

Sox9 is required for prostate development
Thomsen et al., Dev Biol 2008, 316 (2), 302-311

Identification of presomitic mesoderm (PSM)-specific Mesp1 enhancer and generation of a PSM-specific Mesp1/Mesp2-null mouse using BAC-based rescue technology
Oginuma et al., Mech Dev 2008, 125 (5-6) 432-440

Histamine metabolism influences blood vessel branching in zebrafish reg6 mutants
Huang et al., BMC Developmental Biology 2008, 8:31

Edar and Troy signalling pathways act redundantly to regulate initiation of hair follicle development
Pispa et al., Human Molecular Genetics 2008, 17(21):3380-3391

Functional diversification of closely related ARF-GEFs in protein secretion and recycling
Richter et al., Nature 2007 448, 488-492

Wurst is essential for airway clearance and respiratory-tube size control

BMP signaling regulates the dorsal planarian midline and is needed for asymmetric regeneration
Reddien et al., Development 2007, 134, 4043-4051

Wnt signals provide a timing mechanism for the FGF-retinoid differentiation switch during vertebrate body axis extension
Olivera-Martinez and Storey, Development 2007, 134, 2125-2135

Gene Duplication of the Zebrafish kit ligand and Partitioning of Melanocyte Development Functions to kit ligand a
Hultman et al., PLoS Genet 2007, 3(1): e17

Arabidopsis JAGGED LATERAL ORGANS Is Expressed in Boundaries and Coordinates KNOX and PIN Activity
Borghi et al., The Plant Cell 2007, 19:1795-1808

Expanded expression of Sonic Hedgehog in Astyanax cavefish: multiple consequences on forebrain development and evolution
Menuet et al., Development 2007, 134, 845-855

Regeneration and maintenance of the planarian midline is regulated by a slit orthologue
Cebria et al., Dev Biol 2007, 307 (2), 394-406

BMP signaling regulates the dorsal planarian midline and is needed for asymmetric regeneration
Reddien et al., Development 2007, 134, 4043-4051

Transcriptional profiling of inductive mesenchyme to identify molecules involved in prostate development and disease
Vanpoucke et al., Genome Biol. 2007, 8(10): R213
Temporal ChIP-on-chip reveals Biniou as a universal regulator of the visceral muscle transcriptional network
Jakobsen et al., Genes Dev. 2007 1; 21(19): 2448–2460.

Hesr1 and Hesr2 regulate atrioventricular boundary formation in the developing heart through the repression of Tbx2.

Glycogen Synthase Kinase-3 Inactivation and Stabilization of β-Catenin Induce Nephron Differentiation in Isolated Mouse and Rat Kidney Mesenchymes
Kuure et al., J Am Soc Nephrol 2007, 18, 1130-1139

Interactions among PIN-FORMED and P-Glycoprotein Auxin Transporters in Arabidopsis
Blakeslee et al., Plant Cell. 2007, 19(1): 131–147

Morphogenesis defects are associated with abnormal nervous system regeneration following roboA RNAi in planarians
Cebria and Newmark, Development 2007, 134, 833-837

NOGO-A induction and localization during chick brain development indicate a role disparate from neurite outgrowth inhibition
Caltharp et al., BMC Developmental Biology 2007, 7:32

Adrenal development is initiated by Cited2 and Wt1 through modulation of Sf-1 dosage.
Val et al., Development 2007, 134 (12) 2349-58

A Sall4 mutant mouse model useful for studying the role of Sall4 in early embryonic development and organogenesis
Warren et al., Development 2007, 134 (1) 51 – 58

Aristolochic Acid Induces Heart Failure in Zebrafish Embryos That is Mediated by Inflammation
Huang et al., Toxicological Sciences, 2007, 100(2), 486-494

Development of oral and pharyngeal teeth in the medaka (Oryzias latipes): comparison of morphology and expression of eve1 gene

Ectodysplasin has a dual role in ectodermal organogenesis: inhibition of Bmp activity and induction of Shh expression.
Pumilla et al., Development 2007, 134 (1), 117-25

Low divergence in Dlx gene expression between dentitions of the medaka (Oryzias latipes) versus high level of expression shuffling in osteichtyans

In situ hybridisation techniques for mRNA detection in whole mount Arabidopsis samples
“Our protocol was adopted for automation using an in situ dedicated robot "InsituPro" from INTAVIS. To create a program to perform the procedure according to our protocol is rather simple as the manufacturer provides instructions for very intuitive and user friendly programming of the automate. Using this robot [...] tissue permeabilisation, hybridisation and washing steps until detection [...] can be performed.”

Dynamic and Compensatory Responses of Arabidopsis Shoot and Floral Meristems to CLV3 Signaling
Müller et al., The Plant Cell 2006, 18, 1188-1198

Protein and genomic organisation of vertebrate MyoR and Capsulin genes and their expression during avian development
Von Scheven et al., Gene Expr Patterns 2006, 6(4), 383-93
Nakajima et al., Development 2006, 133(13), 2517-25

The TORNADO1 and TORNADO2 Genes Function in Several Patterning Processes during Early Leaf Development in Arabidopsis thaliana

Medaka simplet (FAM53B) belongs to a family of novel vertebrate genes controlling cell proliferation
Thermes et al., Development 2006; 133, 1881-1890

p63 regulates multiple signalling pathways required for ectodermal organogenesis and differentiation
Laurikkala et al., Development 2006, 133, 1553-1563

The molecular setup of the avian head mesoderm and its implication for craniofacial myogenesis
Bothe and Dietrich, Dev. Dynamics 2006; 235, 2845-2860

Activation of Notch1 signaling in cardiogenic mesoderm induces abnormal heart morphogenesis in mouse.
Watanabe et al., Development 2006; 133(9): 1625-34.

Retinaldehyde dehydrogenase 2 (RALDH2)-mediated retinoic acid synthesis regulates early mouse embryonic forebrain development by controlling FGF and sonic hedgehog signaling.
Ribes et al., Development 2006; 133(2): 351-61.

ALCAM (CD166) Is a Surface Marker for Early Murine Cardiomyocytes
Hirata et al., Cells Tissues Organs 2006, 184:172-180

Completing the set of h/E(spl) cyclic genes in zebrafish: her12 and her15 reveal novel modes of expression and contribute to the segmentation clock
Shankaran et al. Dev Biol 2006, 304 (2), 615-632

Developmentally regulated expression of the LRRTM gene family during mid-gestation mouse embryogenesis
Haines and Rigby, Gene Expression Patterns 2006, 7 (1-2), 23-29

her1 and her13.2 are jointly required for somitic border specification along the entire axis of the fish embryo
Sieger et al., 2006 Dev Biol 293 (1), 242-251

Retinoic acid regulates morphogenesis and patterning of posterior foregut derivatives
Wang et al., Dev Biol 2006, 297 (2), 433-445

Immunocytochemical techniques for whole-mount in situ protein localization in plants
Sauer et al., Nat. Protoc. 2006; 1(1): 98-103

Identification of a novel population of adrenal-like cells in the mammalian testis
Val et al., Dev Biol 2006, 299 (1) 250-256

Foxf1 and Foxf2 control murine gut development by limiting mesenchymal Wnt signaling and promoting extracellular matrix production.

Different Roles of Runx2 During Early Neural Crest–Derived Bone and Tooth Development

Morphological and gene expression similarities suggest that the ascidian neural gland may be osmoregulatory and homologous to vertebrate peri-ventricular organs
Deyts et al., European Journal of Neuroscience 2006, 24 (8) 2299 – 2308
HAN11 binds mDia1 and controls GLI1 transcriptional activity
Morita et al., Journal of Dermatological Science 2006, 44 (1) 11-20

Comparative analysis of her genes during fish somitogenesis suggests a mouse/chick-like mode of oscillation in medaka
Gajewski et al., Dev Genes Evo 2006, 216 (6) 315-332

Role of nucleophosmin in embryonic development and tumorigenesis
Grisendi et al., Nature 2005; 437, 147-153

Retinaldehyde dehydrogenase 2 and Hoxc8 are required in the murine brachial spinal cord for the specification of Lim1+ motoneurons and the correct distribution of Islet1+ motoneurons.
Vermot et al., Development 2005; 132(7), 1611-21

Expression domains suggest cell-cycle independent roles of growth-arrest molecules in the adult brain of the medaka, Oryzias latipes
Candal et al., Brain Research Bulletin 2005, 66 (4-6), 426-430

Embryonic versus blastogenetic development in the compound ascidian Botryllus schlosseri: insights from Pitx expression patterns.

A modular cis-regulatory system controls isoform-specific pitx expression in ascidian stomodeaum.

Notch signaling modulates the nuclear localization of carboxy-terminal-phosphorylated smad2 and controls the competence of ectodermal cells for activin A.
Takanori et al., Mech Dev. 2005 May; 122(5): 671-680

An atlas of differential gene expression during early Xenopus embryogenesis
Pollet et al., Mech Dev. 2005 March; 122(3): 365-439

Identification and expression analysis of putative mRNA-like non-coding RNA in Drosophila.

Dynamic Changes in the Response of Cells to Positive Hedgehog Signaling during Mouse Limb Patterning
Sohyun et al., Cell 2004; 118, 505-516

Ectodysplasin A1 promotes placodal cell fate during early morphogenesis of ectodermal appendages.
Mustonen et al., Development 2004; 131(20), 4907-19

Specification of vertebral identity is coupled to Notch signalling and the segmentation clock.
Cordes et al., Development 2004; 131(6), 1221-33

The mouse homeobox gene Not is required for caudal notochord development and affected by the truncate mutation.
Abdelkhalek et al., Genes Dev. 2004; 18(14), 1725-36

Large-scale expression screening by automated whole-mount in situ hybridization
Quiring et al., Mechanisms of Development 2004; 121(7-8), 971-976

Nonindependence of mammalian dental characters
Kangas et al., Nature 2004, 432, 211-214

Expression profiling and comparative genomics identify a conserved regulatory region controlling midline expression in the zebrafish embryo.
Dickmeis et al., Genome Res. 2004, 14(2), 228-38
Medaka as a model system for the characterisation of cell cycle regulators: a functional analysis of Ol-Gadd45y during early embryogenesis
Candal et al., Mechanisms of Development 2004; 121 (7-8), 945-958

Mutations affecting gonadal development in Medaka, Oryzias latipes
Morinaga et al., Mechanisms of Development 2004; 121 (7-8), 829-839

Mutations affecting early distribution of primordial germ cells in Medaka (Oryzias latipes) embryo

Activin-like signaling activates Notch signaling during mesodermal induction.
Abe et al., Int J Dev Biol. 2004;48: 327-332

Multiple levels of transcriptional and post-transcriptional regulation are required to define the domain of Hoxb4 expression.
Brend et al., Development, 2003; 130 (12), 2717-28

Node and midline defects are associated with left-right development in Delta1 mutant embryos.
Przemeck et al., Development, 2003; 130 (1), 3-13

The Claudin-like Megatrachea Is Essential in Septate Junctions for the Epithelial Barrier Function in Drosophila
Behr et al., Developmental Cell, 2003; 5, 611–620

Screening for mammalian neural genes via fluorescence-activated cell sorter purification of neural precursors from Sox1-gfp knock-in mice
Aubert et al., 2003, PNAS 100 Suppl1, 11836-41

Transcriptional oscillation of lunatic fringe is essential for somitogenesis.
Serth et al., 2003, Genes Dev. 17(7), 912-25

Automated whole mount localisation techniques for plant seedlings
Friml et al., 2003, Plant Journal Volume 34 Issue 1, Pages 115 - 124

Opposing FGF and Retinoid Pathways Control Ventral Neural Pattern, Neuronal Differentiation, and Segmentation during Body Axis Extension
Ruth Diez del Corral et al., Neuron 2003, 40(1) 65 - 79

MEPD: a Medaka gene expression pattern database.
Henrich et al., Nucleic Acid Res. 2003, 31(1) 72-4

FGF4, a direct target of LEF1 and Wnt signaling, can rescue the arrest of tooth organogenesis in Lef1(-/-) mice.
Kratochwil et al., Genes Dev. 2002, 16(24) 3173-85

Functional gene screening in embryonic stem cells implicates Wnt antagonism in neural differentiation

The early epaxial enhancer is essential for the initial expression of the skeletal muscle determination gene Myf5 but not for subsequent, multiple phases of somitic myogenesis.
Teboul et al., Development. 2002, 129(19) 4571-80

Onset of neuronal differentiation is regulated by paraxial mesoderm and requires attenuation of FGF signalling.
Diez del Corral et al., Development. 2002, 129(7) 1681-91

Yamamoto et al., Mech Dev. 2002, 116(1-2) 217-21
Auxin transport inhibitors block PIN1 cycling and vesicle trafficking.
Geldner et al., Nature 2001; 413(6854), 425-8

Conditional inactivation of VEGF-A in areas of collagen2a1 expression results in embryonic lethality in the heterozygous state.
Haigh et al., Development 2000; 127(7), 1445-53

SNT-1/FRS28 physically interacts with Laloo and mediates mesoderm induction by fibroblast growth factor.

Action of the Caenorhabditis elegans GATA factor END-1 in Xenopus suggests that similar mechanisms initiate endoderm development in ecdysozoa and vertebrates.
Shoichet et al., PNAS 2000; 97(8), 4076-81

Automated in situ detection (AISD) of biomolecules
Plickert et al., Dev. Genes Evol 1997; 207, 362-367