Literature Review

Engineering circular RNA for potent and stable translation in eukaryotic cells

HPLC Column, Sepax, SRT SEC-2000 PEEK, 5um, 2000 A 4.6 x 300 mm Part Number: 215980P-4630

Contact Us:

Website: <u>Sepax-Tech.com</u> Phone: 1-877-SEPAX-US Email: sales@sepax-tech.com LinkedIn: Sepax-Technologies-Inc

Wesselhoeft, R.A., Kowalski, P.S. & Anderson, D.G. Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat Commun 9, 2629 (2018). https://doi.org/10.1038/s41467-018-05096-6

Massachusetts Institute of Technology

Authors

First Name	Last Name	Account Name
Daniel	Anderson	MIT
Alex	Wesselhoeft	Orna Therapeutics
Piotr	Kowalski	University College Cork

Massachusetts Institute of Technology

Wesselhoeft, R.A., Kowalski, P.S. & Anderson, D.G. Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat Commun 9, 2629 (2018). https://doi.org/10.1038/s41467-018-05096-6

2

Abstract

Messenger RNA (mRNA) has broad potential for application in biological systems. However, one fundamental limitation to its use is its relatively short half-life in biological systems. Here we develop exogenous circular RNA (circRNA) to extend the duration of protein expression from full-length RNA messages. First, we engineer a self-splicing intron to efficiently circularize a wide range of RNAs up to 5 kb in length in vitro by rationally designing ubiquitous accessory sequences that aid in splicing. We maximize translation of functional protein from these circRNAs in eukaryotic cells, and we find that engineered circRNA purified by high performance liquid chromatography displays exceptional protein production qualities in terms of both quantity of protein produced and stability of production. This study pioneers the use of exogenous circRNA for robust and stable protein expression in eukaryotic cells and demonstrates that circRNA is a promising alternative to linear mRNA.

Engineering circular RNA for potent and stable translation in eukaryotic cells Wesselhoeft, R.A., Kowalski, P.S. & Anderson, D.G. Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat Commun 9, 2629 (2018). <u>https://doi.org/10.1038/s41467-018-05096-6</u>

Massachusetts Institute of Technology

Wesselhoeft, R.A., Kowalski, P.S. & Anderson, D.G. Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat Commun 9, 2629 (2018). <u>https://doi.org/10.1038/s41467-018-05096-6</u>

Sample

Broad Sample Type	DNA/RNA/OLIGO
Sample	circRNA
Sample Notes	1-5kb engineered circular RNA, GLuc RNA and a CVB3-GLuc-pAC splicing reaction
Molecular Weight of Sample	~340,000-2,000,000 daltons
Sample Prep	Resulting RNA fractions were precipitated with 5 M ammonium acetate, resuspended in water, and then in some cases treated with RNase R as described above.

Massachusetts Institute of Technology

Wesselhoeft, R.A., Kowalski, P.S. & Anderson, D.G. Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat Commun 9, 2629 (2018). <u>https://doi.org/10.1038/s41467-018-05096-6</u>

LR2022021052

Experimental conditions

Column	SRT SEC-2000 PEEK, 5um, 2000 A 4.6 x 300 mm
Mobile Phase	RNase-free TE buffer (10 mM Tris, 1 mM EDTA, pH:6)
Gradient	isocratic
Flow Rate	0.3ml/min
Instrument	HPLC
Instrument Notes	Agilent 1100 Series HPLC, RNA was detected by UV absorbance at 260 nm, but was collected without UV detection
Injection	30ug

Massachusetts Institute of Technology

Wesselhoeft, R.A., Kowalski, P.S. & Anderson, D.G. Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat Commun 9, 2629 (2018). https://doi.org/10.1038/s41467-018-05096-6

Literature Reference CircRNA on Sepax Analytical SEC

Engineering circular RNA for potent and stable translation in eukaryotic cells

HPLC Column, Sepax, SRT SEC-2000 PEEK, 5um, 2000 A 4.6 x 300 mm Part Number: 215980P-4630

Massachusetts Institute of Technology

Wesselhoeft, R.A., Kowalski, P.S. & Anderson, D.G. Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat Commun 9, 2629 (2018). https://doi.org/10.1038/s41467-018-05096-6

LR2022021052

Order Information

Column	Part Number
HPLC Column, Sepax, SRT SEC-2000 PEEK, 5um, 2000 A 4.6 x 300 mm	<u>215980P-4630</u>

CONTACT US

For Quotes or orders: <u>sales@sepax-tech.com</u> Phone: 1-877-SEPAX-US

For Technical Questions/ Method Development/ IEX Service/ Seminar Requests: techsupport@sepax-tech.com

Website: <u>www.sepax-tech.com</u> LinkedIn: Sepax Technologies Facebook: @Sepaxtech

Massachusetts Institute of Technology

Wesselhoeft, R.A., Kowalski, P.S. & Anderson, D.G. Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat Commun 9, 2629 (2018). https://doi.org/10.1038/s41467-018-05096-6